Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 13(4)2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38391947

RESUMO

Plasmodium parasites need to find red blood cells (RBCs) that, on the one hand, expose receptors for the pathogen ligands and, on the other hand, maintain the right geometry to facilitate merozoite attachment and entry into the red blood cell. Both characteristics change with the maturation of erythrocytes. Some Plasmodia prefer younger vs. older erythrocytes. How does the life evolution of the RBC affect the invasion of the parasite? What happens when the RBC ages? In this review, we present what is known up until now.


Assuntos
Malária Falciparum , Plasmodium falciparum , Humanos , Envelhecimento Eritrocítico , Malária Falciparum/parasitologia , Eritrócitos/parasitologia , Proteínas de Transporte
2.
J Parasit Dis ; 44(2): 305-313, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32499668

RESUMO

Plasmodium falciparum (P. falciparum) malaria presents serious public health problems worldwide. The parasite´s resistance to antimalarial drugs has proven to be a significant hurdle in the search for effective treatments against the disease. For this reason, the study of natural products to find new antimalarials remains a crucial step in the fight against malaria. In this study, we aimed to study the in vivo performance of the decoction of C. nucifera leaves in P. berghei-infected mice. We analyzed the effectiveness of different routes of administration and the acute toxicity of the extract. Additionally, we determined the suppressive, curative and prophylactic activity of the extract. The results showed that the decoction of leaves of C. nucifera is most effective when administered intramuscularly to mice in comparison to intraperitoneal, subcutaneous and intragastric methods. We also found that organ signs of acute toxicity appear at 2000 mg/kg/day as evidenced by necropsy examination. Additionally, we found that the prophylactic effect of the extract is of 48% inhibition, however, there is no curative effect. Finally, in a 4-day suppressive assay, we found that the extract can inhibit the growth of the parasite by up to 54% at sub-toxic doses when administered intramuscularly.

3.
Nat Protoc ; 15(6): 1954-1991, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32405051

RESUMO

Global Natural Product Social Molecular Networking (GNPS) is an interactive online small molecule-focused tandem mass spectrometry (MS2) data curation and analysis infrastructure. It is intended to provide as much chemical insight as possible into an untargeted MS2 dataset and to connect this chemical insight to the user's underlying biological questions. This can be performed within one liquid chromatography (LC)-MS2 experiment or at the repository scale. GNPS-MassIVE is a public data repository for untargeted MS2 data with sample information (metadata) and annotated MS2 spectra. These publicly accessible data can be annotated and updated with the GNPS infrastructure keeping a continuous record of all changes. This knowledge is disseminated across all public data; it is a living dataset. Molecular networking-one of the main analysis tools used within the GNPS platform-creates a structured data table that reflects the molecular diversity captured in tandem mass spectrometry experiments by computing the relationships of the MS2 spectra as spectral similarity. This protocol provides step-by-step instructions for creating reproducible, high-quality molecular networks. For training purposes, the reader is led through a 90- to 120-min procedure that starts by recalling an example public dataset and its sample information and proceeds to creating and interpreting a molecular network. Each data analysis job can be shared or cloned to disseminate the knowledge gained, thus propagating information that can lead to the discovery of molecules, metabolic pathways, and ecosystem/community interactions.


Assuntos
Metabolômica/métodos , Espectrometria de Massas em Tandem/métodos , Animais , Cromatografia Líquida/métodos , Humanos , Redes e Vias Metabólicas , Camundongos , Reprodutibilidade dos Testes , Software , Fluxo de Trabalho
4.
PLoS One ; 14(4): e0214193, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30939131

RESUMO

Cocos nucifera (C. nucifera) (the coconut palm tree) has been traditionally used to fight a number of human diseases, but only a few studies have tested its components against parasites such as those that cause malaria. In this study, C. nucifera samples were collected from a private natural reserve in Punta Patiño, Darien, Panama. The husk, leaves, pulp, and milk of C. nucifera were extracted and evaluated against the parasites that cause Chagas' disease or American trypanosomiasis (Trypanosoma cruzi), leishmaniasis (Leishmania donovani) and malaria (Plasmodium falciparum), as well as against a line of breast cancer cells. While there was no activity in the rest of the tests, five and fifteen-minute aqueous decoctions of leaves showed antiplasmodial activity at 10% v/v concentration. Removal of some HPLC fractions resulted in loss of activity, pointing to the presence of synergy between the components of the decoction. Chemical molecules were separated and identified using an ultra-performance liquid chromatography (UPLC) approach coupled to tandem mass spectrometry (LC-MS/MS) using atmospheric pressure chemical ionization quadrupole-time of flight mass spectrometry (APCI-Q-TOF-MS) and molecular networking analysis, revealing the presence of compounds including polyphenol, flavone, sterol, fatty acid and chlorophyll families, among others.


Assuntos
Antiparasitários/farmacologia , Cocos/química , Leishmaniose/tratamento farmacológico , Malária Falciparum/tratamento farmacológico , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Antiparasitários/química , Arecaceae/química , Doença de Chagas/tratamento farmacológico , Doença de Chagas/parasitologia , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Humanos , Leishmania donovani/efeitos dos fármacos , Leishmania donovani/patogenicidade , Leishmaniose/parasitologia , Malária Falciparum/parasitologia , Panamá , Folhas de Planta/química , Espectrometria de Massas em Tandem , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/patogenicidade
5.
J Vis Exp ; (73): e50342, 2013 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-23486405

RESUMO

Unlike other Plasmodium species, P. falciparum can be cultured in the lab, which facilitates its study (1). While the parasitemia achieved can reach the ≈40% limit, the investigator usually keeps the percentage at around 10%. In many cases it is necessary to isolate the parasite-containing red blood cells (RBCs) from the uninfected ones, to enrich the culture and proceed with a given experiment. When P. falciparum infects the erythrocyte, the parasite degrades and feeds from haemoglobin (2, 3). However, the parasite must deal with a very toxic iron-containing haem moiety (4, 5). The parasite eludes its toxicity by transforming the haem into an inert crystal polymer called haemozoin (6, 7). This iron-containing molecule is stored in its food vacuole and the metal in it has an oxidative state which differs from the one in haem (8). The ferric state of iron in the haemozoin confers on it a paramagnetic property absent in uninfected erythrocytes. As the invading parasite reaches maturity, the content of haemozoin also increases (9), which bestows even more paramagnetism on the latest stages of P. falciparum inside the erythrocyte. Based on this paramagnetic property, the latest stages of P. falciparum infected-red blood cells can be separated by passing the culture through a column containing magnetic beads. These beads become magnetic when the columns containing them are placed on a magnet holder. Infected RBCs, due to their paramagnetism, will then be trapped inside the column, while the flow-through will contain, for the most part, uninfected erythrocytes and those containing early stages of the parasite. Here, we describe the methodology to enrich the population of late stage parasites with magnetic columns, which maintains good parasite viability (10). After performing this procedure, the unattached culture can be returned to an incubator to allow the remaining parasites to continue growing.


Assuntos
Separação Celular/métodos , Eritrócitos/parasitologia , Magnetismo/métodos , Plasmodium falciparum/isolamento & purificação , Eritrócitos/citologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...